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ABSTRACT The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae
poses a significant threat to public health, challenging clinicians worldwide with lim-
ited therapeutic options. This review describes the current coding and noncoding
genetic and transcriptional mechanisms mediating carbapenem and polymyxin resist-
ance, respectively. A systematic review of all studies published in PubMed database
between 2015 to October 2020 was performed. Journal articles evaluating carbapenem
and polymyxin resistance mechanisms, respectively, were included. The search identified
171 journal articles for inclusion. Different New Delhi metallo-b-lactamase (NDM) carba-
penemase variants had different transcriptional and affinity responses to different carba-
penems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile trans-
poson, Tn4401, affect its promoter activity and expression levels, increasing carbapenem
resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF
porin downregulation (mediated by envZ and ompR mutations), micCF small RNA
hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS,
ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance
when coupled with b-lactamase activity in a species-specific manner but not when
acting without b-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect
phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM
(arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation
also affected capsule structure. Mobile and induced mcr, efflux hyperexpression
and porin downregulation, and Ecr transmembrane protein also conferred poly-
myxin resistance and heteroresistance. Carbapenem and polymyxin resistance is
thus mediated by a diverse range of genetic and transcriptional mechanisms that
are easily activated in an inducing environment. The molecular understanding of
these emerging mechanisms can aid in developing new therapeutics for multidrug-
resistant Enterobacteriaceae isolates.
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Antibiotic resistance is a significant problem worldwide, and its spread is a threat to
public health and veterinary medicine due to the resultant restriction or depletion

of therapeutic options, increased health care costs, unlimited transmission, and alarm-
ing mortality rates (1–3). Bacteria belonging to the Enterobacteriaceae family are of clin-
ical concern owing to their association with carbapenem and polymyxin resistance
worldwide (4). Specifically, carbapenem-resistant Enterobacteriaceae are designated by
the World Health Organization (WHO) as critical priority pathogens due to their multi-
drug resistance (MDR) phenotypes and associated morbidities and mortalities (5). This
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is understandable since carbapenems are the treatment of choice and last-resort
agents used against severe infections caused by MDR Enterobacteriaceae, which are
usually resistant to clinically available antibiotics, including b-lactams, fluoroquino-
lones, and aminoglycosides (4, 6, 7). Although not categorized by the WHO yet, poly-
myxin-resistant Gram-negative bacteria (Enterobacteriaceae) also present a grave clini-
cal challenge due to the importance of polymyxin as a reserved agent in treating
carbapenem-resistant bacterial infections (8). The most frequently prescribed carbape-
nems include ertapenem, imipenem, and meropenem. Unlike other b-lactam antibiot-
ics, carbapenems have the broadest antibacterial spectrum (2).

The use of carbapenems for MDR bacterial infections created a selection pressure
within the clinical setting, resulting in the emergence of carbapenem resistance (2).
Carbapenem resistance is primarily mediated by carbapenemase genes found on mo-
bile genetic elements such as plasmids, integrons, insertion sequences, and transpo-
sons, allowing for easier horizontal transfer of genes across and within different bacte-
rial species (9–12). Carbapenemases are a group of b-lactamases that hydrolyze the
b-lactam ring of antibiotics, rendering them inactive (11). Other carbapenem resist-
ance mechanisms include porin alteration, target modification, overproduction of
extended-spectrum b-lactamases (ESBLs), and overexpression of efflux pumps (Fig. 1)
(13).

The emergence of carbapenem resistance in Enterobacteriaceae led to the reintro-
duction of polymyxin as a therapeutic option (14). Polymyxins, which are made up of
polymyxin E and B (also known as colistin), were discovered in 1947 and used for the
treatment of Gram-negative bacterial infections. Polymyxin acts by binding to the lipid
A of the outer membrane of Gram-negative bacteria (15, 16). This interaction results in

FIG 1 Summary of the carbapenem resistance mechanisms seen in Gram-negative bacteria (Enterobacteriaceae). (A) High-level resistance to
carbapenems can be mediated by the alteration of membrane permeability due to porin mutations, restricting the entry of antibiotics into
the periplasmic space. (B and C) Further, the hydrolysis of carbapenems (green balls) by highly expressed (increased concentrations of)
AmpCs, and extended-spectrum b-lactamases (ESBLs) (B), as well as carbapenemases (C), respectively, also confer resistance to carbapenems.
(D) Increased efflux pump activity also decreases the concentration of antibiotics (carbapenems) in the periplasmic space, reducing
susceptibility to the antibiotic. (E) Finally, mobile genetic elements (MGEs), such as plasmids (with high copy numbers), transposons, and
insertion sequences (upstream or within promoter sequences), can increase the expression levels of carbapenemases, AmpCs, and ESBLs,
leading to higher levels of resistance to carbapenems. The figure was constructed using chemix.org and Paint 3D.
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the disruption of the bacterial membrane, leading to cell death (13, 15). The use of
polymyxin, however, was diminished in the 1970s due to its neurotoxicity and nephro-
toxicity (16) but was widely used in veterinary medicine for the treatment of diarrhea
in food-producing animals and as a growth promoter (17, 18). Its use as a growth pro-
moter resulted in increased reports on polymyxin-resistant bacteria. Thereafter, a
worldwide dissemination of the plasmid-mediated mcr-1 gene through the food-chain
proliferated (19). Hence, several countries banned or restricted the use of polymyxin as a
feed additive in veterinary medicine (20). Despite polymyxin’s limitations in human med-
icine, the increasing incidence of carbapenem-resistant Enterobacteriaceae led to the re-
vival of polymyxin as a last-line treatment (21, 22).

The use of polymyxin in both human and veterinary medicine has led to the emer-
gence of polymyxin-resistant Enterobacteriaceae (8). Polymyxin resistance is primarily
mediated through covalent modification of the lipid A moiety of the bacterial lipopoly-
saccharide (LPS), through the addition of 4-amino-4-deoxy-arabinose or phosphoetha-
nolamine residues (8, 23, 24). Specific chromosomal mutations within the two-compo-
nent systems pmrA/pmrB and phoP/phoQ cause these modifications and within the
genes that regulate these systems (23, 25). Recently, plasmid-mediated mcr-type genes
encoding a phosphoethanolamine transferase enzyme were discovered and found to
be responsible for the horizontal transfer of polymyxin resistance (8, 25). These modifi-
cations reduce the negative net charge of the LPS, reducing the affinity of the polyca-
tionic polymyxin peptide to the outer membrane of bacteria and thus decreasing the
bacterial susceptibility to polymyxin (8, 15). Other resistance mechanisms include the
use of efflux pumps, the formation of capsules, and the decrease in outer membrane
proteins (8).

The occurrence of carbapenem and polymyxin resistance within Enterobacteriaceae
reduces the therapeutic options for the treatment of MDR bacterial infections and
increases the incidence of infections and mortality rates. This systematic review aims to
describe the current resistance mechanisms that are known and explained in literature
and to identify gaps within the field.

EVIDENCE BEFORE THIS REVIEW

In terms of polymyxin resistance mechanisms, numerous reviews have evaluated
both the different resistance mechanisms and the epidemiology of mcr-type genes
and their role in mediating polymyxin resistance (26, 27). Carbapenem resistance
mechanisms have also been described in several reviews for both carbapenemase-pro-
ducing and -nonproducing Enterobacteriaceae (28). This review, however, provides an
in-depth characterization of emerging coding and noncoding genomic and transcrip-
tional mechanisms that mediate resistance in polymyxin- and carbapenem-resistant
Enterobacteriaceae. Particularly, other genome-based but noncoding elements media-
ting polymyxin and carbapenem resistance are also highlighted since their roles in
polymyxin and carbapenem resistance have been less reviewed. Each resistance mech-
anism is supplemented with evidence from the literature to emphasize its role in medi-
ating resistance.

LITERATURE SEARCH STRATEGY

A comprehensive literature search was carried out using the PubMed database.
English journal articles published within the last 5 years (January 2015 to October
2020) were retrieved and screened with the following keywords: “carbapenem” and
“colistin” in permutation and combination with “imipenem OR ertapenem OR merope-
nem OR doripenem OR polymyxin” and “resistance AND Enterobacteriaceae” in a facto-
rial fashion. The search was focused on journal articles that evaluated the role of spe-
cific genes, noncoding elements, and transcriptional factors mediating resistance in
Enterobacteriaceae using molecular intervention (mutagenesis, gene editing, etc.)
assays. Therefore, studies that involved reviews, diagnostics, case reports, case studies,
risk factors, epidemiology, and surveillance were excluded. Studies that performed
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antibiotic sensitivity testing and identified the presence of carbapenemase and mcr-
type genes in isolates without evaluating the role of genes in mediating resistances
were regarded as epidemiological studies and were excluded. Nevertheless, epidemio-
logical studies that identified these resistance genes and further investigated whether
the transfer of genes conferred resistance were included. The following data were
extracted from the included articles: Enterobacteriaceae species, sample sources, mo-
lecular techniques used, and resistance genes (Table 1). The inclusion and exclusion
protocols used in this review are given in Fig. S1 in the supplemental material.

CARBAPENEM RESISTANCE MECHANISMS

Carbapenem resistance in carbapenem-resistant Enterobacteriaceae (CRE) is medi-
ated by a variation and synchrony of different resistance mechanisms: the loss of major
porin proteins, increased activity of efflux pumps, and the production of b-lactamases,
i.e., carbapenemases, ESBLs, and cephalosporinases (AmpCs) (Fig. 1). The b-lactamases
include ESBLs (TEM, PER, VEB, SHV, LEN, and CTX-M), carbapenemases (such as KPC,
GES-5, IMI, VCC, OXA-48, IMP, VIM, and NDM), and AmpC-type b-lactamases (i.e., CMY,

TABLE 1 Emerging genomic and transcriptional mechanisms mediating carbapenem resistance mechanisms in Enterobacteriaceae

Resistance mechanism Species Resistance determinant(s) Reference(s)
Narrow- and extended-spectrum
b-lactamases

Enterobacter cloacae complex AmpC 100
Escherichia coli AmpC 101

ESBL 1, 54, 58
Klebsiella pneumoniae AmpC, ESBL 101

Carbapenemase Citrobacter freundii LMB-1 39
NDM, KPC 11
OXA 102, 103

Escherichia coli IMP 47
KPC-variants 3, 37, 46
NDM 3, 44, 45, 51, 103–109
NDM, KPC, IMP 110
OXA 41, 111, 112

Enterobacter cloacae complex FRI-3 113, 114
FLC-1 115
GES 116
IMP 115
KPC 46
LMB 117
MIR-17 118
NDM 119
OXA 102, 120

Klebsiella pneumoniae KPC 9, 32, 121–126
IMP 127
NDM-4 43, 44, 128–132
OXA 42, 102, 111, 130, 133–136
VIM 125, 137

Klebsiella aerogenes NDM 138
Klebsiella quasipneumoniae KHM-1 139
E. coli, E. cloacae, and K. pneumoniae NDM 12

Efflux pumps Escherichia coli AcrAB-TolC 3, 55, 59, 63, 65, 67, 140
Klebsiella pneumoniae AcrAB-TolC 3, 65, 67, 125

AcrAB, RamA 141

Porin deficiency Escherichia coli OmpK35 and/or OmpK36 49, 51, 52, 54, 58, 67, 101, 125, 142, 143
PhoE 144

Enterobacter cloacae complex OmpK35 and/or OmpK36 1, 9, 64, 100, 145
MicC and MicF 53

Klebsiella pneumoniae OmpK35 and/or OmpK36 32, 33, 67, 111, 125, 136, 145–147
Raoultella orithinolytica OmpK35 and/or OmpK36 6

Target modifications Escherichia coli MdrA 148, 149
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FOX, MOX, ACT, MIR, DHA, etc.) (29–31). These enzymes are frequently plasmid-borne
genes, allowing for the dissemination of genes within and between Gram-negative
bacteria species. This results in resistance toward penicillin, cephalosporins, carbape-
nems, and/or monobactams (29, 202, 203). Carbapenem resistance in Enterobacteriaceae
is mediated mainly by the production of carbapenemases (11). However, elevated carba-
penem resistance in carbapenemase-producing Enterobacteriaceae is usually through
the overproduction of carbapenemases and/or alteration of membrane permeability
(Table 1) (32).

CARBAPENEMASE PRODUCTION

Carbapenemases are broad-spectrum b-lactamases that hydrolyze the b-lactam
ring of carbapenems and other b-lactam antibiotics (11, 33). There are three groups of
carbapenemases: Ambler class A, class B that is made up of metallo-b-lactamases
(MBLs), and class D b-lactamases (34–36). Class A has a broad spectrum of activity and
utilizes a serine residue in its active site during cleavage of the b-lactam ring of penicil-
lin, cephalosporins, classic b-lactamase inhibitors (sulbactam and tazobactam), aztreo-
nam, and carbapenems (37, 38). Class B depends on zinc as a cofactor in its active site
but has a similar spectrum of activity as class A, sparing aztreonam (39, 40). Class D,
similar to class A, utilizes a serine residue in its active site but has a unique spectrum of
activity, i.e., reduced carbapenem susceptibility, high resistance to penicillin, and inter-
mediate resistance to cephalosporins; it is inactive against aztreonam (41, 42). Klebsiella
pneumoniae carbapenemase (KPC) of class A, New Delhi MBL (NDM) carbapenemase of
class B, and oxacillin-hydrolyzing carbapenemase (OXA-48/-181) from class D are respon-
sible for most carbapenem resistance in CRE (35).

Other clinically relevant carbapenemases include MBLs that belong to subclass B1:
Verona Integron-encoded MBLs (VIM) and imipenemase (IMP) (34, 43). As carbapene-
mases spread within Enterobacteriaceae, amino acid substitutions occur, producing dif-
ferent variants of the carbapenemase. This results in changes in the carbapenemase ac-
tivity and its affinity to carbapenems (43). Paul et al. (44) showed that NDM variants
(NDM-1 and NDM-5) had different transcriptional responses to different carbapenems,
where NDM-5 had a 10-fold increase in expression when exposed to ertapenem, and
NDM-1 had only a 2-fold increase. Paul et al. (44) further speculated that new variants
of NDM are evolving inducibility in the presence of carbapenem drugs, resulting in ele-
vated NDM production. A similar study revealed how molecular differences between
NDM-17 and NDM-5 carbapenemases affected their carbapenemase activity (45). NDM-
17 had an E170K (glutamic acid to lysine) amino acid substitution that was responsible
for higher affinity and an increased carbapenemase activity compared to NDM-5, result-
ing in elevated ertapenem and meropenem resistance (45). In KPC, mutations within its
mobile transposon affects the promoter activity of blaKPC and, subsequently, carbapenem
resistance (Table 1).

The blaKPC gene is usually located within a 10-kb mobile transposon, Tn4401, allow-
ing for its dissemination within the Enterobacteriaceae family and other Gram-negative bac-
teria such as Pseudomonas and Acinetobacter species (46). Cheruvanky et al. studied the dif-
ferent Tn4401 isoforms within Enterobacteriaceae and identified three isoforms—Tn4401b,
Tn4401a, and Tn4401h—which were mostly found in Klebsiella (48%), Enterobacter (37%),
and Citrobacter (12%) spp. Tn4401a and Tn4401h were mutational variations of Tn4401b.
Genomic comparison analysis found that Tn4401a and Tn4401h had 99- and 188-bp
deletions, respectively, between the P1 and P2 regions of the putative promoter sequen-
ces (46). These mutations increased the promoter activity of these isoforms that resulted
in a 23- and 4-fold increase in KPC expression in Tn4401a and Tn4401h, respectively,
compared to the Tn4401b isoform (46).

In electrocompetent E. coli Genehog cells, the three different isoforms were intro-
duced. This resulted in meropenem MIC values of 1, 16, and 4mg/ml for Tn4401b,
Tn4401a, and Tn4401h, respectively. Tn4401a had the highest KPC production, which
conferred the highest meropenem resistance (46). Huang et al. performed a similar
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study characterizing three Tn3-Tn4401 chimera isoforms: CTA, CTB, and CTC. The chi-
meras had different combinations of P1, PY, and PX promoters, and the study eval-
uated how it affected the expression of blaKPC and carbapenem susceptibility in KPC-
producing isolates. Huang et al. and Cheruvanky et al. both showed that mutations
within the putative promoter sequence of Tn4401 affect the expression of the blaKPC
gene and carbapenem susceptibility in isolates.

The overproduction of carbapenemase in an IMP-harboring E. coli isolates was
achieved through the insertion of an insertion element (IS26) within the ardK gene of
the IncN plasmid during meropenem selection (47). ardK encodes a putative transcrip-
tion factor that negatively modulates the transcription of the blaIMP-6 gene (47). The dis-
ruption of this gene with an IS26 element resulted in 53- and 256-fold increases in IMP
production and meropenem resistance, respectively (47). Although the parental E. coli
strain harbored IMP and was carbapenem susceptible, it plays a potential role in the
dissemination of IMP-6-harboring plasmids that can, under selection, mediate a high-
level carbapenem resistance (47). Wu et al. (11) identified a clinical Citrobacter freundii
ST88 isolate that harbored two carbapenemase-harboring plasmids encoding blaKPC-2
and blaNDM-1, respectively. The transformation of E. coli J53 with both plasmids con-
ferred 2- or 4-fold increases in imipenem and meropenem MICs compared to J53 iso-
late alone or with either plasmid. Thus, the coexistence of blaKPC-2 and blaNDM-1 resulted
in a synergistic effect, conferring high-level carbapenem resistance, resulting in MIC
values of 1,024 and 512mg/ml for imipenem and meropenem, respectively, in the C.
freundii isolate (Table 1).

Unlike the other resistance mechanisms, carbapenemase production is adequate to
confer clinical resistance for carbapenems. This was shown by Choudhury et al., who
transformed E. coli J53 competent cells with an NDM-4-harboring plasmid. The donor
isolate, E. coli ST448, and the transformant both had MICs above the imipenem, mero-
penem, and ertapenem breakpoints (48).

b-LACTAMASE PRODUCTION

In non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae, carba-
penem nonsusceptibility is observed in ESBL- and/or AmpC b-lactamase-producing
Enterobacteriaceae. When ESBL production is coupled with the loss of the two major
outer membrane porin groups, including OmpC and OmpF, clinical carbapenem resist-
ance is observed (49). OmpC and OmpF are responsible for the nonspecific transport
of solutes across the outer membrane into the cytoplasm (4). OmpC and OmpF are
homologues of OmpK36 and OmpK35, respectively (6), and will be used interchange-
ably in this review.

The production of extended-spectrum and AmpC b-lactamases alone without
membrane impermeability is insufficient to confer clinical carbapenem resistance. van
Boxtel et al. (1) showed that the transformation of E. coli isolates with a plasmid encod-
ing blaCMY-2 gene resulted in reduced meropenem susceptibility of E. coli but did not
confer clinical meropenem resistance (Table 1).

AmpC and ESBLs have previously been shown to hydrolyze carbapenems weakly,
and van Boxtel et al. further showed that CMY-2 hydrolysis of meropenem was below
the detection limit during b-lactamase activity evaluation assays. Clinical meropenem
resistance was observed when a blaCMY-2- harboring plasmid transformed a porin-defi-
cient Escherichia coli isolate (1). Guiana ESBL (GES) belonging to Amber class A acquires
carbapenemase activity due to the glycerin substitution at position 170 with either a
serine or an asparagine (13). Streling et al. (13) reported that GES-16, which had the
Gly170Ser amino acid substitution, had a broad-spectrum hydrolysis profile, hydrolyzing
penicillin, cephamycin, cephalosporins, and carbapenems. Although GES-16 showed some
carbapenemase activity, it conferred low-level resistance to carbapenems. Moreover, it
remains to be seen if GES-16 shall be classified as a carbapenemase like GES-5 (50) since
they had similar kinetic parameters toward carbapenems (13).
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ALTERATION OF MEMBRANE PERMEABILITY

The loss of major outer membrane proteins, OmpK36 and OmpK35, is frequently
observed in CRE, resulting in reduced permeability of the outer membrane due to
structural changes in porin channels restricting the uptake of charged molecules
through the bacterial cell wall (Fig. 1) (3, 49, 51). These structural changes were due to
mutations that either reduced the channel size of porins or modified its electrostatics
(52). This phenotype is frequently observed in resistance-induced mutants through se-
rial passage assays of non-carbapenemase-producing isolates (53). Hao et al. (53)
revealed that clinical Enterobacteriaceae isolates acquired carbapenem resistance
through mutations within both OmpK36 and OmpK35 proteins. Isolates with muta-
tions in both OmpK36 and OmpK35 had elevated resistance (8 to 32mg/ml) to ertape-
nem, imipenem, and meropenem compared to isolates with only OmpK36 mutations
(0.25 to 2mg/ml). This correlates with the findings of Hamzaoui et al. (2) in K. pneumo-
niae isolates, which showed that the loss of both major porins or mutations within
genes seen to regulate the porin system resulted in elevated carbapenem resistance.
These genes include the two-component transduction regulatory system envZ-ompR,
micF, and micC genes (4, 53). These mutations include single-base deletion, insertion,
or substitution in the coding sequence resulting in the inactivation of proteins (53).

EnvZ is an inner membrane sensor kinase that is encoded by the EnvZ-OmpR regu-
latory system that regulates the expression of the two major porin groups, OmpC and
OmpF (54). This is accomplished through phosphorylation or dephosphorylation of
OmpR, the transcriptional factor responsible for porin gene activation (54). The phos-
phorylation of OmpR results in a structural change in the protein, increasing its binding
affinity to the major porin transcriptional factor binding site (51). Kong et al. (51)
revealed that the Gly63Ser amino acid substitution within the N-terminal phosphoryla-
tion domain of OmpR affects the phosphorylation of OmpR by EnvZ. The OmpR mu-
tant, after that, failed to initiate porin transcription, resulting in a change in membrane
permeability and, subsequently, carbapenem resistance (51). The study further went
on to show the synergistic effect of OmpR mutants and carbapenemase activity, with
the transformation of OmpR mutants with a NDM-harboring plasmid resulting in a
100-fold increase in the carbapenem MIC (Table 1) (51).

SDS-PAGE analysis of the outer membrane porins of OmpR mutants revealed a
sharp decrease in the expression of both major porin groups (49). Adler et al. (55)
reported that mutations within both envZ and ompR are early genetic events that
mediate carbapenem resistance during serial passage. OmpR mutants had decreased
expression of both ompC and ompF, whereas envZ mutations led to downregulation of
ompF and upregulation of ompC. In ompCF-deleted porin-deficient isolates, envZ muta-
tions were still observed and resulted in a 6-fold increase in carbapenem resistance,
illustrating that envZ mutations are critical for carbapenem resistance (55). The role of
envZ in mediating resistance in porin-deficient isolates is still unknown (54).

The loss of the major porin groups can also be achieved through the change in
expression ofmicC and micF genes. These genes are part of the outer membrane genes
and encode small antisense RNA that negatively regulates OmpC and OmpF genes (4,
53). Serial passage of Enterobacter aerogenes (currently Klebsiella aerogenes) performed
by Hao et al. (53) produced two carbapenem-resistant isolates with the loss of both
major porin groups. SDS-PAGE analysis of the outer membrane proteins revealed the
loss of both porins; however, no mutations within ompCF were observed compared to
E. aerogenes strain NCTC10336, which led to the investigation of micC and micF gene
expression. Transcriptional analysis revealed that the overexpression of both micC and
micF in isolates results in the significant downregulation of OmpK36 and OmpK35,
respectively (53). Similar results were observed in E. coli, where the upregulation of
micF resulted in the downregulation of ompF genes (4). Interestingly, the upregulation
of micC leads to the downregulation of ompC but to an increase in ompF to compen-
sate for the loss of OmpC (4).
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PORIN DEFICIENCY AND b-LACTAMASE PRODUCTION

The loss of both major outer membrane proteins, OmpK35 and OmpK36, in E. coli
and K. aerogenes was seen in some clinical isolates to mediate high-level carbapenem re-
sistance (51–53). However, in K. pneumoniae, Salmonella enterica serotype Typhimurium,
and other Enterobacteriaceae species, including Enterobacter cloacae complex (E. asburiae
and E. cloacae) and Raoultella ornithinolytica, porin deficiency reduces the susceptibility
of isolates to carbapenem but does not confer clinical resistance, and b-lactamase activ-
ity is required (56, 57). The transformation of porin-deficient isolates with an NDM-har-
boring plasmid revealed a synergistic effect mediating high-level carbapenem resistance
(51). Porin deficiency reduces the uptake of antibiotics into the periplasm, which reduces
the concentrations of antibiotics in the periplasmic space and cytosol, amplifying the
b-lactamase effect (due to reduced intracellular antibiotic concentrations) and resulting
in a synergistic effect (Fig. 1) (49). van Boxtel et al. (1) demonstrated that for clinical mer-
openem resistance in CMY-2-harboring E. coli isolate, mutations that disrupt porin
expression and increase CMY-2 expression were required. Individually, the loss of porin
and the upregulation of CMY-2 expression reduced meropenem susceptibility in isolate
but did not confer clinical resistance. Clinical resistance was achieved when both
mechanisms were found in the isolate, resulting in a meropenem MIC of .32mg/ml
(1) (Table 1 and Fig. 1).

OVERPRODUCTION OF EFFLUX PUMPS

In ESBL-producing Enterobacteriaceae, carbapenem resistance is also achieved
through the overexpression of efflux pumps (58, 59). The overexpression of the efflux
pump phenotype is usually observed when there is a significant increase in carbape-
nem susceptibility when an isolate is incubated with a carbapenem and the appropri-
ate efflux pump inhibitor. There are different types of efflux pump inhibitors (EPIs)
based on their mechanisms of action (60). Carbonyl cyanide m-chlorophenylhydrazine
(CCCP) is an example of a protonophore that indirectly affects the activity of proton
pumps by disrupting the proton motive force, reducing ATP production and resulting
in an increased membrane permeability (60, 61). The disruption of the proton motive
force across the membrane leads to membrane depolarization, eradicating the electro-
chemical concentration gradient across the membrane (60).

Osei Sekyere and Amoako (60) hypothesized that the cytoplasmic ion imbalance
caused by the depolarized membrane created by CCCP disrupts the optimal activity of
carbapenemase, which requires energy (ATP) and zinc to function. This was observed
when some carbapenemase-producing Enterobacteriaceae species resulted in a 2-fold
reduction in meropenem resistance in the presence of CCCP. At the same time, CCCP did
not affect carbapenem susceptibility in non-carbapenemase-producing Enterobacteriaceae
isolates (60). More research evaluating the effects of a depolarized membrane on carbape-
nemase activity is required to support this hypothesis.

Another mechanism of action of EPIs is the direct binding of an EPI to the functional
efflux pump, reducing the ability of antibiotics to be pumped out of the cell by efflux
pumps. This is the mechanism of action of phenylalanine-arginine b-naphthylamide
(PAbN) (61). Lee and coworkers identified an E. cloacae ST74 clinical isolate whose imi-
penem susceptibility increased from 64mg/ml to 0.5mg/ml in the presence of PAbN,
revealing the active role of efflux pumps in mediating carbapenem resistance and the
synergistic effect of PAbN and carbapenemases in increasing carbapenem susceptibil-
ity in E. coli (Fig. 1) (60, 62).

AcrAB-TolC is a well-known multidrug efflux pump system that confers resistances
toward a wide variety of agents, including b-lactams and is responsible for the MDR
phenotype in E. coli (59, 63). It belongs to the resistance nodulation division (RND)
superfamily and has been shown to synergistically work with other mechanisms to
confer high-level resistance (3, 59). AcrAB-TolC is a tripartite efflux pump system that
is made up of acrA, acrB, and tolC genes that encode a periplasmic membrane fusion
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protein, an inner membrane transporter, and an outer membrane protein, respec-
tively (Fig. 1) (3, 59).

Saw et al. (3) evaluated the role of the AcrAB-TolC efflux pump system in
Enterobacteriaceae species, viz., E. coli, K. pneumoniae, and Salmonella enterica serotype
Typhimurium. In all three isolates, mutations within acrAB and tolC had no significant
effect on carbapenem susceptibility. The transformation of acrAB and tolC mutants of
E. coli and K. pneumoniae with KPC-harboring plasmid resulted in 4- and 8-fold
increases in ertapenem and meropenem resistance, respectively. In KPC-producing E.
coli and K. pneumoniae, the introduction of acrAB mutations resulted in a 4-fold
increase in ertapenem MIC in E. coli and a 2- to 8-fold increase in carbapenem resist-
ance in K. pneumoniae. acrAB mutations in carbapenemase-harboring K. pneumoniae
and E. coli isolates created a synergistic effect with the b-lactamase activity, causing
high-level carbapenem resistance (3).

The introduction of tolC mutations and KPC- and NDM-harboring plasmids into S.
Typhimurium isolates resulted in 2-, 250-, and 1,000-fold increases in the ertapenem
MICs, respectively. The introduction of carbapenemases in Salmonella enterica serotype
Typhimurium isolates, therefore, results in elevated carbapenem resistance (3). The
introduction of acrAB mutations in KPC and NDM-producing isolates did not affect nor
contribute to carbapenem resistance in S. Typhimurium isolates. In comparison, the
introduction of tolC mutations resulted in 2- and 4-fold increases in the ertapenem
MICs in S. Typhimurium isolates (3).

AcrAB-TolC efflux pump systems in the Enterobacteriaceae family are regulated by
the local regulators AcrR and the global regulators MarA, SoxS, and RamA (59, 64).
Mutations within ramA and ramB have been shown via quantitative-PCR to upregulate
RamA and AcrA transcripts, increasing efflux pump activity and decreasing ompCF expres-
sion (64). A novel AraC-type regulator called regulator of antibiotic resistance A, RarA, regu-
lates the efflux pump system conferring the MDR phenotype in Enterobacteriaceae (63).
Chetri et al. (63) evaluated its transcriptional response with the increase of carbapenem
concentration. The expression of RarA was directly proportional to the concentration of
ertapenem, resulting in the upregulation of AcrAB expression, reducing carbapenem sus-
ceptibility in E. coli clinical isolates (Table 1).

The study showed that RarA acts as a positive regulator of AcrAB, independent of
the global regulators MarA, SoxS, and RamA (63). The transformation of E. coli DH5a
with a plasmid encoding rarA resulted in MIC values of .32mg/ml for ertapenem, mer-
openem, and imipenem (65). Pavez et al. evaluated the AcrAB efflux pump expression
under imipenem stress and found that MarA and SdeR were responsible for the
increased expression of AcrAB efflux pump in E. coli, E. cloacae, and K. pneumoniae (65).
The global regulatory pathways are interconnected and function to downregulate
porin expression and upregulate efflux systems (64). The overexpression of acrAB
decrease the expression of porin genes, ompC and ompF (59). Pal et al. (66) reported
an active role of acrB expression in augmenting ompC reduction in E. coli and K. pneu-
moniae isolates. The mechanisms mediating this role is unknown; however, the global
regulatory system is assumed to play a role (64). Mutations within AcrD, a transporter of
the RND superfamily, have been shown to compensate for the loss of AcrB, increasing
the export of carbapenems out of the periplasm and mediating carbapenem resistance
(Fig. 1) (55). This was seen in E. coli isolates with acrD and acrB double mutants (55).
Mutations in the local AcrAB-TolC regulator, AcrR, increases AcrB expression, increasing
carbapenem nonsusceptibility in E. coli isolates (55). An increase in efflux pump activity,
mediated by mutations in the regulators stated above, only confers clinical carbapenem
resistance in Enterobacteriaceae, and aids in mediating high-level carbapenem resistance
when coupled with b-lactamase/carbapenemase production (Fig. 1) (3, 67).

POLYMYXIN RESISTANCE MECHANISMS

Polymyxin resistance in Enterobacteriaceae includes modification of the LPS in the
outer membrane layer of the bacterium, neutralizing the negative charge of the
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outer membrane (23). This results in a weak interaction or binding affinity between
the positively charged polymyxin and LPS molecules, viz., lipid A (21, 22). These
modifications include the transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) and
phosphoethanolamine (PEtN) to the 4-phosphate and the 1-phosphate groups of
lipid A, respectively, through the pbgP operon and PmrC or mcr-type gene products
(Fig. 2) (22).

The pbgP operon encodes the endogenous LPS modification system that is regu-
lated by PhoPQ and PmrAB two-component regulatory systems (68, 69). The pbgP op-
eron encodes enzymes that synthesize Ara4N from UDP glucuronic acid and mediates
the addition of Ara4N to the 1-phosphate group of lipid A (70). These regulatory sys-
tems are responsible for the biosynthesis and transfer of Ara4N to lipid A; chromo-
somal mutations within the phoP, phoQ, and pmrB genes upregulate these systems,
mediating polymyxin resistance (Fig. 2) (23, 71).

PmrAB TWO-COMPONENT REGULATORY SYSTEM

The PmrAB system is made up of a pmrABC operon that encodes three proteins: a cyto-
plasmic membrane-bound sensor kinase, PmrB; a regulatory protein, PmrA; and a PEtN
transferase, PmrC (21). PmrB activates PmrA protein through phosphorylation, which
then binds to the pbgP operon for Ara4N modification (21). The cytoplasmic mem-
brane-bound kinase is further activated by extracellular stimulants, such as a high
concentration of iron (Fe31) and aluminum (Al31), as well as an acidic pH (,5.5)
(69). Mutations within pmrB increase PmrB kinase activity, resulting in autophos-
phorylation of PmrA and leading to an increased expression of the pbgP operon
(21). Cannatelli et al. (204) showed that pmrB mutation leads to the constitutive
activation of pmrA that increases the expression of pmrK (of pbgP operon), resulting
in colistin resistance in the E. coli ST59 isolate.

In Salmonella enterica subsp. enterica serovar Newport ST45, colistin resistance was
achieved through a 12-nucleotide deletion within pmrB, conferring colistin resistance
(16mg/liter) (72). Phan et al. (21) showed that pmrB mutations have a feedback loop
onto pmrC and pmrA genes located upstream of the pmrB gene. PmrC (also known as
eptA) is responsible for the biosynthesis of PEtN transferase that is regulated by the
response regulator PmrA (21). Hence, the upregulation of PmrA by PmrB mutants acti-
vates both pmrC and pbgP, resulting in both PEtN and Ara4N modification of the LPS
(Fig. 2) (16, 73). The deletion of pmrAB decreases the expression of pmrC and pbgP op-
eron and colistin susceptibility (Table 2) (22).

FIG 2 Representation of the various mechanisms and determinants interacting to mediate polymyxin
resistance in Gram-negative bacteria. The LPS of the outer membrane of Gram-negative bacteria is
modified through PmrC, the pbgP operon, and mcr-type genes. The PmrC and PbgP genes are
regulated by three two-component systems—PhoPQ, PmrAB, and CrrAB—that are interconnected by
CrrC and PmrD proteins. The newly discovered DedA and Ecr proteins also activate PbgP through
PhoPQ, whereas Ecr also activates DedA and TolC. Heteroresistance in Enterobacter sp. is thought to
be mediated by Ecr membrane proteins. A “1” indicates activation toward upregulation; a “–”
indicates repression/inhibition toward downregulation. The diagram was constructed using Paint 3D
with a structure based on one by Cheng et al. (75).
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CrrAB TWO-COMPONENT REGULATORY SYSTEM

The PmrAB regulatory system is regulated by the CrrAB two-component regulatory
system, which encodes a sensor kinase (crrB), a regulatory protein (crrA), and a modula-
tor (crrC) that regulates the pbgP operon (Fig. 2) (16, 22). An increase in crrC expression,
mediated by crrB mutations, increases PEtN and Ara4N modifications through the pbgP
operon and the pmrC gene, respectively (22, 74). Jayol et al. (74) identified four crrB
mutations—an F84S mutation within the HAMP domain and N141Y, P151L, and G183V
mutations within the histidine kinase A domain, respectively—in four K. pneumoniae
isolates, which conferred high-level colistin resistance (74). Each isolate had a colistin
MIC value of .128mg/ml and, when transformed with a plasmid with an intact crrB
gene, colistin susceptibility was restored (74).

CrrAB regulates pmrAB operon through crrC expression, and this allows for the
activation of both pmrC genes and pbgP operon through pmrA (22, 75). CrrC acts as
a connection protein between CrrAB and PmrAB and is regulated by crrA (75).
Cheng et al. showed that crrB mutations also result in an increased expression of
H239_3064, a putative efflux pump, resulting in a reduced polymyxin susceptibility
(Table 2) (75).

TABLE 2 Emerging genomic and transcriptional mechanisms mediating polymyxin resistance mechanisms in Enterobacteriaceae

Resistance mechanism Species Resistance determinant(s) Reference(s)
Efflux pumps Escherichia coli AcrAB 150

MarA, AcrAB 151
Enterobacter cloacae complex TolC, SoxRS 152
Klebsiella pneumoniae RamA, SoxS 80
Salmonella enterica serovar Typhimurium AcrB, CpxR 153

mcr-type genes Citrobacter braakii MCR-1 154
Citrobacter freundii MCR-1 155
Escherichia coli MCR-1 19, 82, 85, 93, 155–175

MCR-2 176
MCR-3 162, 169, 177, 178
MCR-5 95, 96
MCR-9 98

Enterobacteria cloacae complex MCR-4.3 97
Klebsiella pneumoniae MCR-1 25, 174, 179

MCR-7.1 94
MCR-8 180

Salmonella enterica MCR-1 181
MCR-2 181
MCR-9 92

Salmonella enterica serovar Paratyphi B MCR-5 99
Salmonella enterica serovar Typhimurium MCR-9 91
Shigella sonnei MCR-1 182
Shigella flexneri MCR-1 183

TCS PEtN modification Citrobacter PhoPQ-PmrAB 184
Escherichia coli PhoPQ-PmrAB 18, 21, 23, 24, 68, 185

QseBC-PmrAB 98, 186, 187
Enterobacter PhoPQ-PmrAB 76, 184
Klebsiella pneumoniae PhoPQ-PmrAB 69, 71, 81, 188–190

CrrAB 16, 22, 73–75, 77
Salmonella enterica serovar Typhimurium PhoPQ-PmrAB 72, 191
Yersinia pestis PhoPQ 192

PEtN modification Escherichia coli MgrB 68, 82, 83, 86
Klebsiella pneumoniae MgrB 7, 25, 133, 193–197
Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica EptA 181, 185
Escherichia coli EptA, EptB, EptC 198
Salmonella enterica serovar Typhimurium MgrB, SroC, EptB 199

Membrane permeability Salmonella enterica serovar Typhimurium Mig-14 200
Unknown mechanisms Salmonella enteritidis Not applicable 201
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PhoPQ TWO-COMPONENT REGULATORY SYSTEM

The PhoPQ system encodes a regulatory protein (PhoP) and a membrane-bound
sensor kinase (PhoQ); LPS modification is mediated through PhoQ activation of PhoP
via phosphorylation (71). Activated PhoP either binds directly to pbgP operon or indi-
rectly by binding to PmrD, a connector protein of PhoPQ and the PmrAB system, which
protects PmrA from dephosphorylation by PmrB kinase (Fig. 2) (21, 74). The PmrD pro-
tein is, however, not found in all Enterobacteriaceae species, being mainly found in E.
coli, S. enterica, and K. pneumoniae (76). In E. coli, however, PmrD does not connect the
two regulatory systems (77).

Similar to PmrB, the cytoplasmic membrane-bound kinase, PhoQ, is activated by
environmental stimulants such as a low concentration of magnesium (Mg21) and
calcium (Ca21) (69). Jayol et al. showed that an phoP mutation, Asp191Tyr, which
caused significant modification to the secondary structure of the protein interrupt-
ing the a-helix, resulted in elevated colistin resistance (MIC of 12mg/ml). A phoP
mutation upregulated phoP, phoQ, pmrD, and pmrK (69). Cain et al. demonstrated
that a single mutation (K46Q) in the phoQ phosphate domain resulted in the loss-
of-function of PhoQ, resulting in colistin resistance during serial passage of K. pneu-
moniae (16). Site-directed mutagenesis in phoQ (Leu26Pro) performed by Cheng et
al. in K. pneumoniae resulted in elevated colistin resistance with a 32-fold increase
in the MIC (Table 2) (68).

Huang et al. (78) investigated the polymyxin resistance mechanisms of heterogene-
ously resistant E. cloacae using Tn5 mutagenesis. These authors found that mutations
within the DedA protein may mediate heteroresistance to polymyxin through the
PhoPQ system (78). The DedA protein is part of a superfamily of membrane proteins
and is proposed to be a substrate of the protein-motive-force-dependent drug efflux
(78, 79). Though its role in the PhoPQ system was not investigated, Huang et al. found
that Tn5 insertion mutations within the dedA gene resulted in E. cloacae susceptibility
to polymyxin (MIC of 1mg/liter). The complementation of dedAEcl mutants with plas-
mids carrying phoP-phoQ or wild-type dedAEcl with its natural promoters restored the
heteroresistance phenotype (MIC of 256mg/liter) (78).

The polymyxin heteroresistance seen in E. cloacae was, however, mediated by a
new small transmembrane protein-encoding gene, ecr, which was hypothesized to
activate the pbgP operon via the PhoPQ system (78). The transformation of
Enterobacter mori strain A6008 with ecr on a pCR-BluntII-TOPO vector conferred high-
level resistance to colistin (MIC 256mg/liter) and resulted in significant changes in the
expression profile of the pbgP operon and PhoPQ system (78). Ecr is suspected to act
on the PhoPQ system, activating the pbgP operon and increasing LPS modification.
The introduction of ecr into A6008 further resulted in the upregulation of tolC and
dedA expression. Ecr was found to be widely spread in the Enterobacter genus, and
thus its role in mediating resistance should further be investigated (78).

The mgrB gene encodes a small transmembrane lipoprotein that is responsible for
the negative regulation of the PhoPQ system by inhibiting the kinase activity of PhoQ
(73, 80). Multiple studies have shown that the deletion or inactivation of mgrB leads to
the upregulation of the phoPQ operon, resulting in enhanced LPS modification in K.
pneumoniae (Fig. 2) (68, 81, 82). The mgrB gene has been reported to be inactivated
through various mutations such as deletion, nonsense, missense, and insertional muta-
tions (83–85). Formosa et al. (86) investigated the difference in the surface proper-
ties of the extracellular capsule using atomic force microscopy in K. pneumoniae
isolates with or without polymyxin. The capsule of the K. pneumoniae isolates with
an inactivated mgrB gene was tightly bound to the bacterial cell wall and, when
exposed to polymyxin, the capsule became harder with increasing concentration.
In contrast, polymyxin was able to remove the capsule from K. pneumoniae isolates
with an intact mgrB gene, resulting in lysis (86). This study demonstrated that inac-
tivation of the mgrB gene directly affects the organization of capsules during poly-
myxin exposure (86).
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MOBILIZED POLYMYXIN RESISTANCE (mcr) GENES

The second type of LPS modification seen to achieve polymyxin resistance is the
transfer of phosphoethanolamine (PEtN) mediated by PmrC and mobilized colistin re-
sistance (mcr-type) genes (21, 82). mcr-type genes are plasmid-mediated (some have
also been detected on chromosomes) genes that encode enzymes that modify lipid A
through the addition of PEtN (23, 87). This phenotype was observed in mcr-positive E.
coli isolates using mass spectrometry with a PEtN-modified lipid A peak at m/z 1,919
instead of m/z 1,796 in mcr-negative E. coli isolates (87–89). These genes are responsi-
ble for the horizontal transfer of polymyxin resistance in Enterobacteriaceae through
mobile genetic elements (MGEs) (23, 90). To date, there are 10 mcr genes that have
been identified, with mcr-1 genes being the most prevalent and predominantly found
in E. coli (91, 92). The transformation of E. coli ST7314 isolates with an mcr-1-bearing
plasmid resulted in a 32-fold increase in colistin MIC (85, 93). The acquisition of mcr-
type genes, therefore, has a significant clinical impact by conferring high-level resist-
ance to colistin (87). Sato et al. (18) showed that colistin-resistant E. coli had elevated
eptA and arnT expression levels compared to colistin-susceptible E. coli ST131 isolates
and exhibited PEtN modifications.

The decrease in polymyxin susceptibility is seen across most mcr genes, including
mcr-7.1 isolated from K. pneumoniae in chickens (94), mcr-5.1 isolated from E. coli in
retail chicken rice (95), and mcr-5 isolated from pigs in E. coli (96). mcr-4.3, identified in
a clinical E. cloacae isolate in China, was found to not confer polymyxin resistance (97).
Chavda et al. (97) compared mcr-4.3 to mcr-4 and identified two amino acid substitu-
tions in mcr-4.3 that significantly altered the function ofmcr-4, resulting in no modifica-
tions to lipid A. mcr-9, however, remains the most identified variant after mcr-1 and is
common in several Enterobacteriales species, although it is particularly common in
Enterobacter hormaechei and other Enterobacter sp. (205).

mcr-type genes may sometimes be polymyxin induced; Kieffer et al. (98) showed
that mcr-9 mRNA expression was induced by colistin, where an increase in colistin con-
centration increased the number of mcr-9 transcripts (98). This feature, however, was
only seen with mcr-9 genes and not with mcr-1 and was reported to be regulated by
the two-component system located downstream of the mcr-9 gene (98). In Salmonella
Paratyphi B, Borowiak et al. (99) showed that an increase in plasmid copy number
resulted in a higher degree of colistin resistance. Sun et al. (93) showed that one plas-
mid copy number results in PEtN modification and, subsequently, a reduced polymyxin
susceptibility in E. coli isolates; moreover, Zhang et al. (206) demonstrated that the
plasmid types hosting the mcr gene also affects mcr expression and polymyxin
resistance.

Kieffer et al. (98) and Cha et al. (92) explored the genomic context of mcr-9 genes in
an E. coli 68A strain and a Salmonella enterica isolate and found that the inducible
expression and transferability of mcr-9 genes was due to the QseC-QseB two-compo-
nent system. In the E. coli isolate the mcr-9 gene was located on a IncH2 plasmid, and
in S. enterica it was located on an IncX1 plasmid. On both plasmids, the mcr-9 gene
was located between two insertion sequences, and qseC and qseB genes were located
downstream of the mcr-9 gene (92, 98).

Though a high level of resistance is observed in most mcr-positive isolates, Zhang
et al. (25) reported that it does not confer the same level of resistance to polymyxin as
an inactivated mgrB gene. Zhang et al. (25) further reported that the transformation of
inactivated mgrB K. pneumoniae isolates with an mcr-harboring plasmid does not result
in a synergistic activity i.e., no change in polymyxin MIC value. Sato et al. (18) and
Kieffer et al. (98) both showed that mcr-type genes do not affect PmrAB genes; thus,
only PEtN modifications are observed in mcr-positive isolates (Fig. 2).

POLYMYXIN RESISTANCE INDUCTION

In polymyxin inducing environments, mcr-negative isolates acquire resistance
through mutations that increase the expression of PhoPQ and PmrAB regulatory
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systems (71). Mutations within the phoQ and insertions in mgrB have been identified in
K. pneumoniae isolates, resulting in the upregulation of phoQ, pmrD, and pbgP (71). A
K. pneumoniae isolate was identified with crrB mutations resulting in increased pmrB
expression (71). A serial passage performed by Cain et al. (16) reported a change in
membrane permeability, contributing to polymyxin resistance. The expression of sev-
eral efflux pumps—BN373_11321 (RND-family), BN373_15271 (MacA), and BN373_
26531 and BN373_36071 (RND-family)—was increased under polymyxin selection (16).
These efflux pumps have been previously reported to act as multidrug transporters
(16). The outer membrane porins OmpA and OmpC that allow for active antibiotic
uptake were significantly decreased in K. pneumoniae isolates (16). Although these
mechanisms were not actively investigated, the change in membrane permeability
may result in the reduction of polymyxin susceptibility (Table 2).

CONCLUSION

The misuse of antibiotics creates a selection pressure, resulting in mutations or
transmission of resistance genes mediating antibiotic resistance. This is mainly seen in
b-lactamase- and mcr-negative Enterobacteriaceae isolates that mutate and acquire
high-level resistance in antibiotic-inducing environments through target modifications,
overexpression of efflux pumps, and loss of major porin groups. This emphasizes the
need for the correct usage of carbapenem and polymyxin antibiotics during therapy to
ensure therapeutic success instead of the production of resistant clinical isolates. This
review provides an in-depth molecular characterization of current and emerging resist-
ance mechanisms that mediate carbapenem and polymyxin resistance. The mecha-
nisms, however, of RamA, an efflux pump regulator, and micC and micF, which are
small RNAs, in downregulating the major porin groups is unknown. Thus, further
research into factors influencing this phenotype through these negative regulators is
required. The role of micC and micF also shows the importance of sRNA and siRNA in
gene regulation and antimicrobial resistance. Hence, studies investigating the global
role of these small regulatory RNAs in microbial resistance is needed.

Within Enterobacterales, members of the tribe Proteeae and Serratia sp. are known
to be intrinsically resistant to polymyxin. Mechanisms mediating resistance to these
species were not discussed here since they were not found in the included articles.
Future studies might interrogate transcriptional, coding, and noncoding genetic ele-
ments mediating intrinsic resistance in these clinically important species. Finally, stud-
ies demonstrating the transcriptional effects of noncoding and coding genetic ele-
ments in OXA-48 carbapenemase-mediated carbapenem resistance were not included
in this review because they did not meet the inclusion criteria. Hence, further transcrip-
tional and mutagenesis studies are required to confirm the effects of noncoding and
coding genetic elements on the transcriptional levels and subsequent phenotypic re-
sistance levels of OXA-48-type carbapenemases in Enterobacterales.
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